CNN-LSTM混合模型在堆积层滑坡地表位移预测中的应用

Hybrid CNN-LSTM Model for Surface Displacement Prediction in Accumulation Layer Landslides

  • 摘要: 利用黄石市石溪村某卫生所的全球导航卫星系统(GNSS)记录的一次突发性的小规模堆积层滑坡地表位移及该点的降雨量和土壤含水率数值,采用基于卷积神经网络(Convolutional Neural Network,CNN)与长短时记忆网络(Long Short-Term Memory,LSTM)的混合模型,对该次滑坡地表位移的变化进行预测。首先,使用CNN模型从时序数据中提取特征,并利用ReLU激活函数引入非线性变换以提高模型表达能力;再将提取的特征传递给LSTM层进行时序建模,并通过全连接层将LSTM的输出映射到指定的输出维度,进而完成本次滑坡地表位移的预测研究。结果显示,与传统、单一的LSTM网络相比,CNN-LSMT混合模型对堆积层滑坡地表位移的预测效果具有显著优势,能大幅度提高预测结果的精准度。研究结果可为黄石地区堆积层滑坡灾害预警及防治工作提供科学的参考依据。

     

    Abstract: The surface displacement of a sudden small-scale accumulation landslide recorded by the global navigation satellite system(GNSS)of a health center in Shixi village, Huangshi City, as well as the rainfall and soil moisture content of this area are used to predict the surface displacement variations of this landslide by using the hybrid model of convolutional neural network(CNN)and long shorterm memory network(LSTM). Initially, CNN model is used to extract features from time-series data, and ReLU activation function is used to introduce nonlinear transformation to improve the expression ability of the model. Then the extracted features are transferred to the LSTM layer for time series modeling, and the output of the LSTM is mapped to the specified output dimension through the full connection layer to complete the landslide surface displacement prediction. The results show that compared to traditional methods and standalone LSTM networks, the CNN-LSTM hybrid model exhibits significant advantages in predicting surface displacement of accumulation layer landslides, achieving substantially improved prediction accuracy. The results can provide scientific insights for early warning and mitigation of landslide hazards in Huangshi area.

     

/

返回文章
返回